Pedoman Praktis Pembangunan Rumah Tahan Gempa
PENDAHULUAN
Wilayah Indonesia mencakup daerah-daerah yang mempunyai tingkat
resiko gempa yang tinggi diantara beberapa daerah gempa diseIuruh dunia.
Data-data terakhir yang berhasil direkam menunjukkan bahwa rata-rata
setiap tehun terjadi sepuluh kegiatan gempa bumi yang mengakibatkan
kerusakan yang cukup besar di Indonesia. Sebagian terjadi pada daerah
lepas pantai dan sebagian lagi pada daerah pemukiman (untuk melihat
kejadian gempa bumi pada hari ini klik disini)
Pada daerah pemukiman yang cukup padat, perlu adanya suatu perlindungan
untuk mengurangi angka kematian penduduk dan kerusakan berat akibat
goncangan gempa.
Dengan menggunakan prinsip teknik yang benar, detail konstruksi yang
baik dan praktis maka kerugian harta benda dan jiwa menusia dapat
dikurangi.
Dalam webblog ini, diuraikan faktor-faktor dasar dari goncangan gempa
yang kemudian di uraikan prinsip-prinsip utamanya yang akan dipakai
dalam membangun rumah tahan gempa.
BEBERAPA KARAKTERISTIK GONCANGAN GEMPA
Pada lokasi bangunan, gempa bumi akan menyebabkan tanah dibawah
bangunan dan di sekitarnya tergoncang dan bergerak secara tak beraturan
(random). Percepatan tanah terjadi dalam tiga dimensi membentuk
kombinasi frekwensi getaran dari 0,5 Hertz sampal 50 Hertz. Jika
bangunan kaku (fixed) terhadap tanah (dan tidak dapat tergeser) gaya
inersia yang menahan percepatan tanah akan bekerja pada tiap-tiap elemen
struktur dari bangunan selama gempa terjadi. Besarnya gaya-gaya inersia
ini tergantung dari berat bangunannya, semakin ringan berarti semakin
kecil gaya inersia yang bekerja dalam elemen struktur tersebut.
Tanggung jawab sebagai orang yang berkecimpung daIam industri
konstruksi adalah mendirikan bangunan sedemikian rupa sehingga bangunan
tetap mampu berdiri menahan gaya-gaya inersia tersebut. Pertanyaan yang
timbul kemudian, “Berapa kekuatan bangunan yang kita perlukan ?”.
TINGKAT PEMBEBANAN GEMPA
Pada tahun 1981, studi untuk menentukan besarnya “beban gempa
rencana” sudah dilakukan. Studi ini adalah proyek kerja sama antara
Pemerintah Indonesia-New Zealand yang menghasilkan. Peraturan Muatan
Gempa lndonesia.
Pada konsep peraturan tersebut ada 2 (dua) langkah pendekatan untuk menghitung pembebanan gempa yang dapat digunakan.
Kriteria pertama, bahwa perencanaan pembebanan gempa sedemikian rupa
sehingga tidak terjadi kerusakan struktur atau kerusakan arsitektural
setiap kali terjadi gempa. Kriteria kedua meskipun terjadi gempa yang
hebat bangunan tidak boleh runtuh tetapi hanya boleh kerusakan-kerusakan
pada bagian struktur yang tidak utama atau kerusakan arsitektur saja.
Telah diketahui bahwa adalah tidak ekonomis merencanakan bangunan tahan
gempa cara elastis. Jadi untuk gempa yang besar dimana kemungkinan
terjadinya kira-kira 15% dari umur bangunan tersebut, dipakai harga
perencanaan yang rendah dan perencanaan khusus serta ukuran
detail-detail diambil sedemikian sehingga menjamin beberapa bagian
tertentu dari struktur akan Ieleh (berubah bentuk dalam keadaan plastis)
untuk menyerap sebagian enersi gempa (yang berlaku untuk keadaan
kenyal). Besarnya harga beban rencana yang terjadi berhubungan dengan
beberapa faktor yang selengkapnya terdapat pada reference, yang
disimpulkan sebagai berikut:
1. Faktor Lapangan (site)
Gambar dibawah ini, menunjukkan enam jalur gempa di Indonesia yang menentukan parameter dasar pembebanan
Parameter
ini dimodifikasikan untuk perhitungan pada kondisi tanah Iunak dimana
goncangan tanah akibat gempa akan diperbesar (mengalami pembesaran).
(Untuk Jakarta, pada zone 4 dan diatas tanah lunak koefisien beban
rencana lateral adalah 0,05 untuk struktur yang kaku seperti perumahan
bertingkat rendah).
2. Faktor Bangunan
Beban yang terjadi pada suatu bangunan juga tergantung pada keadaan
(features) dari bangunan rersebut, yakni fleksibilitasnya, beratnya dan
bahan bangunan untuk konstruksinya. Biasanya suatu bangunan yang
fIeksibel akan menerima beban gempa yang Iebih kecil dibandingkan
bangunan yang lebih kaku. Bangunan yang lebih ringan akan menerimna
beban gempa yang Iebih keciI dari pada bangun yang berat dan bangunan
yang kenyal akan menyerap beban gempa yang lebih kecil dari pada
bangunan yang getas yang mana dalam keadaan pengaruh gempa akan tetap
elastis atau runtuh secara mendadak. Bangunan dari kayu digolongkan
sebagai bangunan yang kenyal. Untuk struktur kayu harus direncanakan
dengan menggunakan Peraturan Muatan Indonesia yang baru. Beban rencana
adalah 33% – 50% dari gaya yang menyebabkan struktur belum mulai Ieleh
atau masih dalam keadaan elastis. Reduksi ini tidaklah sama besarnya
untuk bahan bangunan yang lain, misalnya baja yang mempunyai kekenyalan
yang lebih besar dari kayu. Meskipun demikian kekenyalan dapat
diciptakan dalam struktur kayu dengan menggunakan alat penyambung yang
kenyal pada tiap-tiap hubungan elemen stuktur kayu tersebut. Pada
umumnya, sambungan dengan paku memberikan kekenyalan yang cukup.
3. Tingkat Pembebanan Gempa untuk Bangunan Kayu
Dengan memperhatikan faktor lapangan dan faktor bangunan, struktur
kayu harus tetap mampu berdiri untuk menahan beban-beban sebagai berikut
: (Jakarta, tanah lunak)
Rangka kayu kenyal : 0,05 *) x 1,7 = 0,085
Dinding geser kayu : 0,05 *) x 2,5 = 0,125
Konstruksi rangka kayu yang diperkuat dengan batang pengaku diagonal: 0,05 *) x 3 = 0,15
Dinding geser kayu : 0,05 *) x 2,5 = 0,125
Konstruksi rangka kayu yang diperkuat dengan batang pengaku diagonal: 0,05 *) x 3 = 0,15
Keterangan :
*) Faktor ini mempunyai harga maksimum 0,13 pada zone I dan 0 pada zone 6.
*) Faktor ini mempunyai harga maksimum 0,13 pada zone I dan 0 pada zone 6.
Hal ini berarti, misalnya suatu dinding geser yang terbuat dari
plywood atau particle board, harus dapat menerima gaya horisontal
sebesar 0,125 x berat total dari bagian struktur yang membebani dinding
tersebut. Meskipun suatu bangunan direncenakan dengan harga pembebanan
yang benar, mungkin bangunan. tersebut mengalami kerusakan akibat gempa
jika sebagian dari prinsip-prinsip utamanya tidak dipenuhi.
PRlNSlP-PRlNSIP UTAMA KONSTRUKSI TAHAN GEMPA
1. Denah yang sederhana dan simetris
Penyelidikan kerusakan akibat gempa menunjukkan pentingnya denah
bangunan yang sederhana dan elemen-elemen struktur penahan gaya
horisontal yang simetris. Struktur seperti ini dapat menahan gaya gempa
Iebih baik karena kurangnya efek torsi dan kekekuatannya yang lebih
merata.
2. Bahan bangunan harus seringan mungkin
Seringkali, oleh karena ketersedianya bahan bangunan tertentu.
Arsitek dan Sarjana SipiI harus menggunakan bahan bangunan yang berat,
tapi jika mungkin sebaiknya dipakai bahan bangunan yang ringan. Hal ini
dikarenakan besarnya beban inersia gempa adalah sebanding dengan berat
bahan bangunan. Sebagai contoh penutup atap genteng diatas kuda-kuda
kayu menghasilkan beban gempa horisontal sebesar 3 x beban gempa yang
dihasilkan oleh penutup atap seng diatas kuda-kuda kayu. Sama halnya
dengan pasangan dinding bata menghasiIkan beban gempa sebesar 15 x beban
gempa yang dihasilkan oleh dinding kayu.
3. Perlunya sistim konstruksi penahan beban yang memadai
Supaya suatu bangunan dapat menahan gempa, gaya inersia gempa harus
dapat disalurkan dari tiap-tiap elemen struktur kepada struktur utama
gaya honisontal yang kemudian memindahkan gaya-gaya ini ke pondasi dan
ke tanah.
Adalah sangat penting bahwa struktur utama penahan gaya horizontal
itu bersifat kenyal. Karena, jika kekuatan elastis dilampaui, keruntuhan
getas yang tiba-tiba tidak akan terjadi, tetapi pada beberapa tempat
tertentu terjadi Ieleh terlebih dulu.
Suatu contoh misalnya deformasi paku pada batang kayu terjadi sebelum keruntuhan akibat momen lentur pada batangnya.
Cara dimana gaya-gaya tersebut dialirkan biasanya disebut jalur Iintasan gaya.
Tiap-tiap bangunan harus mempunyai jalur lintasan gaya yang cukup untuk dapat menahan gaya gempa horisosontal.
Untuk memberikan gambaran yang jelas, disini diberikan suatu contoh
rumah sederhana dengan tiga hal utama yang akan dibahas yaitu struktur
atap, struktur dinding dan pondasi.
3.1. Struktur atap
Jika tidak terdapat batang pengaku (bracing) pada struktur atap yang
menahan beban gempa dalam arah X maka keruntuhan akan terjadi seperti,
diperlihatkan pada gambar berikut:
Sistim batang pengaku yang diperlukan diperlihatkan pada gambar di bawah ini :Jika lebar bangunan lebih besar dari lebar bangunan di mungkin diperlukan 2 atau 3 batang pengaku pada tiap-tiap ujungnya.
Dengan catatan bahwa pengaku ini harus merupakan sistim menerus
sehingga semua gaya dapat dialirkan melalui batang-batang pengaku
tersebut.
Gaya-gaya tersebut kemudian dialirkan ke ring balok pada ketinggian langit-langit.
Gaya-gaya dari batang pengaku dan beban tegak lurus bidang pada dinding menghasilkan momen lentur pada ring balok seperti terlihat pada gambar dibawah ini :
Gaya-gaya dari batang pengaku dan beban tegak lurus bidang pada dinding menghasilkan momen lentur pada ring balok seperti terlihat pada gambar dibawah ini :
Jika panjang dinding pada arah lebar (arah pendek) lebih besar dari 4
meter maka diperlukan batang pengaku horisontal pada sudut untuk
memindahkan beban dari batang pengaku pada bidang tegak dinding daIam
arah X dimana elemnen-elemen struktur yang menahan beban gempa utama.
Sekali lagi ring balok juga harus menerus sepanjang dinding dalam arah X dan arah Y
Sebagai pengganti penggunaan batang pengaku diagonal pada sudut, ada 2 (dua) alternatif yang dapat dipilih oIeh perencana;
Sebagai pengganti penggunaan batang pengaku diagonal pada sudut, ada 2 (dua) alternatif yang dapat dipilih oIeh perencana;
Ukuran ring balok dapat diperbesar dalam arah horisontal, misalnya 15
cm menjadi 30cm atau sesuai dengan yang dibutuhkan dalam perhitungan.
Ring bolok ini dipasang diatas dinding dalam arah X.
Dipakai langit-langit sebagai diafragma, misalnya plywood.
Dipakai langit-langit sebagai diafragma, misalnya plywood.
Untuk beban gempa arah Y, sistim struktur dibuat untuk mencegah ragam
keruntuhan. Untuk mengalirkan gaya dari atap kepada dinding dalam arah
Y, salah satu alternatif diatas dapat dipilih yaitu penggunaan batang
pengaku horisontal ring balok atau memakai langit-langit sebagai
diafragma.
3.2. Struktur dinding
Gaya-gaya aksiaI dalam ring balok harus ditahan oleh dinding.
Pada dinding bata gaya-gaya tersebut ditahan oleh gaya tekan diagonal
yang diuraikan menjadi gaya tekan dan gaya tarik. Gaya aksiaI yang
bekerja pada ring balok juga dapat menimbulkan gerakan berputar pada
dinding. Putaran ini ditahan oleh berat sendiri dinding, berat atap yang
bekerja diatasnya dan ikatan sloof ke pondasi.
Jika momen guling lebih besar dari momen penahannya maka panjang dinding harus diperbesar.
Jika momen guling lebih besar dari momen penahannya maka panjang dinding harus diperbesar.
Kemungkinan lain untuk memperkaku dinding adalah sistim diafragma
dengan menggunakan plywood, particle board atau sejenisnya, atau pengaku
diagonal kayu untuk dinding bilik.
Penggunaan dinding diafragma lebih dianjurkan karena sering terjadi
kesulitan untuk memperoleh sambungan ujung yang lebih pada sistim
pengaku diagonal.
Beban gempa yang bekerja pada arah Y ditahan dengan cara yang sama dengan arah X
Sebagal sistem struktur utama yang mana dinding harus mampu menahan
beban gempa yang searah dengan bidang dinding, dinding juga harus mampu
menahan gempa dalam arah yang tegak lurus bidang dinding.
Dengan alasan ini maka dinding bata (tanpa tulangan) harus diperkuat dengan kolom praktis dengan jarak yang cukup dekat. Sebagai pengganti kolom praktis ini dapat dipakai tiang kayu.
Dengan alasan ini maka dinding bata (tanpa tulangan) harus diperkuat dengan kolom praktis dengan jarak yang cukup dekat. Sebagai pengganti kolom praktis ini dapat dipakai tiang kayu.
3.3. Struktur pondasi
Struktur pondasi berperanan penting untuk memindahkan beban gempa dari dinding ke tanah.
Pertama, pondasi harus dapat menahan gaya tarik vertikal dan gaya tekan dari dinding. Ini berarti sloof menerima gaya geser dan momen lentur sebagai jalur Iintasan gaya terakhir sebelum gaya-gaya tersebut mencapai tanah.
Pertama, pondasi harus dapat menahan gaya tarik vertikal dan gaya tekan dari dinding. Ini berarti sloof menerima gaya geser dan momen lentur sebagai jalur Iintasan gaya terakhir sebelum gaya-gaya tersebut mencapai tanah.
Akhirnya sloof memindahkan gaya-gaya datar tersebut ke pada tanah yang ditahan oleh daya dukung tanah dan tekanan tanah lateral.
Rumah yang terbuat dari kayu dengan lantai kayu dan pondasi kayu
seperti gambar-gambar di bawah ini memerlukan batang pengaku untuk
mencegah keruntuhan.
KESIMPULAN
Dari uraian diatas, goncangan gempa dan cara menghitung harga pembebanan gempa untuk suatu bangunan, dapat disimpulkan
bahwa :
bahwa :
Kekenyalan struktur sangat ditekankan sekali untuk mencegah keruntuhan bangunan.
Gaya gempa hanya dapat ditahan oleh sistem struktur yang menerus
(jalur lintasan gaya yang menerus) dari puncak bangunan sampai ke tanah.
PENGKONSTRUKSIAN : (klik tayangan video berikut)
- A.W. Charleson, M.E., MNZIE. “KONSTRUKSI RUMAH TAHAN GEMPA DI INDONESIA”.
- Teddy Boen, Ir., “MANUAL BANGUNAN TAHAN GEMPA”.
- Studio Penataan Bangunan dan Lingkungan Dirjen Cipta Karya 2006 “PEDOMAN TEKNIS PEMBANGUNAN RUMAH TAHAN GEMPA” [download] [preview]
- FAI-Studio
Silahkan download artikel diatas ini dalam bentuk format doc [klik disini] atau [klik disini]
Baca (download) juga REFERENSI TERKAIT berikut :
- “MENINGKATKAN DAYA TAHAN TERHADAP GEMPA PADA GEDUNG KECIL, RUMAH DAN PRASARANA DAERAH”, Oleh : Gregory A. J. Szakats, BE (Civil), MIPENZ (Civil & Structural), MIStrukE, IntPE [download] [preview]
- “PETA ZONA GEMPA INDONESIA SEBAGAI ACUAN DASAR PERENCANAAN DAN
PERANCANGAN BANGUNAN”, Diterbitkan oleh Pusat Litbang Sumber Daya Air.
[download] [preview]
- “PENYEDERHANAAN CARA PERHITUNGAN STRUKTUR UNTUJK BANGUNAN TAHAN
GEMPA TERTENTU” (Oleh : Ratna K. Gunawan., Anwar, S.SP., Limasalle)
bahan Seminar dan Pemeran HAKI 2007, Konstruksi Tahan Gempa di
Indonesia) [download]
- “BEBERAPA KETENTUAN BARU MENGENAI DISAIN STRUKTUR BAJA TAHAN
GEMPA” Oleh : Muslinang Moestopo, Staf Peneliti Riset Rekayasa Struktur
Bangunan Fak. Teknik Sipil dan Lingkungan ITB, Bahan Seminar dan
Pameran HAKI 2007, Konstruksi Tahan Gempa Indonesia. [download]
- Cara Memperbaiki Bangunan Sederhana Rusak Akibat Gempa Bumi, Oleh : Teddy Boen, dan Rekan. [download] [preview]
- Paket Informasi Rumah Aman Gempa “BUKAN GEMPANYA TAPI BANGUNANNYA” [download] [preview]
- Informasi Gempa Terkini, klik disini
- “TIMBERLINE GEODESICS”, Alternatif lain bentuk konstruksi bangunan tahan gempa klik disini
- Rumah “DOME” tahan gempa klik disini
- Rumah Tahan Gempa (Gambar Sketsa), klik disini
- Resiko Gempa di Indonesia, klik disini
- Peta Gempa Sumbar, klik disini
- Subdiksi Pelat Tektonik di Sumatera, klik disini
- Fakta dan Data Gempa Padang, klik disini
- Soft Story Menyebabkan Bangunan Kolaps di Kota Padang, klik disini dan disini
- Sumatera Earthquke 30 September 2009 (The Emegency Mapping Service), klik disini
Dalam rangka mensosialisasikan atau memasyarakatkan perencanaaan dan pelaksanaan pembangunan rumah tahan gempa dibawah ini dapat didownload panduan teknis berupa modul, standar, pedoman dan petunjuk teknis yang praktis tentang teknologi pembangunan rumah tahan gempa.
Silahkan download :
- Poster Bangunan Setengah Tembok
- Poster Bangunan Tembok
- Poster Bangunan Tembok 2
- Poster Bangunan Kayu 1
- Poster Bangunan Kayu 2
TIPS Untuk Anda :
- Buku Siaga Gempa dan Tsunami, “Buku Mewarnai Untuk Anak-anak”, buku ini dicetak atas kerjasama SAMIN dan BSS for Needy Children dengan Terre des Hommes Germany”, [download] [preview]
- Pedoman Teknis Pembangunan Rumah Sederhana Sehat (Rs Sehat), Kepmen Pemukiman dan Prasarana Wilayah N0. 403/KPTS/M/2002, [download] [preview]
- Daftar Peraturan lainnya terkait bangunan [klik disini dan disini]
- Gempa bumi adalah suatu sunah Allah SWT dalam rangka memperluas jagat raya serta bumi ini, silahkan baca artikel dan lihat tayangan video MENGEMBANGNYA ALAM SEMESTA, [klik disini]
- Cara penyelamatan diri dari bahaya gempa, klik video berikut :
No comments
Post a Comment