Breaking News

integral


Integrasi adalah salah satu dari dua operasi dasar kalkulus; operasi yang lain adalah penurunan (derivasi). Pada penurunan, terdapat aturan yang menjadikan turunan dari fungsi-fungsi kompleks dapat ditelusuri dari penurunan fungsi-fungsi komponennya yang lebih sederhana. Hal ini tidak terdapat dalam integrasi sehingga tabel integral biasanya amat berguna.
Artikel ini memberikan tabel operasi integrasi yang umum dijumpai. Pada daftar integrasi di bawah ini, C menyatakan konstanta sebarang.

Mencari nilai integral

[sunting]Substitusi

Contoh soal:
Cari nilai dari:\int \frac{ln x}{x}\,dx\,
t = \ln x, dt = \frac{dx}{x}
\int \frac{ln x}{x}\,dx\, = \int t\,dt
= \frac {1}{2} t^2 + C
= \frac {1}{2} ln^2x + C

[sunting]Integrasi parsial

Integral parsial menggunakan rumus sebagai berikut:
\int f(x)g(x)\,dx = f'(x)g(x) -  f(x)g'(x)
Contoh soal:
Cari nilai dari: \int \ln x \,dx\,
f'(x) = 1, f(x) = x, g(x) = ln x, g'(x) = \frac{1}{x}\,
Gunakan rumus di atas
\int \ln x\ dx = x ln x - \int x\frac{1}{x}\,dx\,
= x ln x - \int  1\,dx\,
= x ln x - x + C\,

[sunting]Substitusi trigonometri

BentukGunakan
\sqrt{a^2-b^2x^2}\,x = \frac{a}{b}\sin \alpha\,
\sqrt{a^2+b^2x^2}\, \!\, x = \frac{a}{b}\tan \alpha\,
\sqrt{b^2x^2-a^2}\,\, x = \frac{a}{b}\sec \alpha\,
Contoh soal:
Cari nilai dari: \int \frac{dx}{x^2\sqrt{x^2+4}}\,
x = 2 \tan A, dx = 2 \sec^2 A\,dA\,
\int \frac{dx}{x^2\sqrt{x^2+4}}\,
= \int \frac {2 sec^2 A\,dA}{(2 tan A)^2\sqrt{4 + (2 tan A)^2}}\,
= \int \frac {2 sec^2 A\,dA}{4 tan^2A\sqrt{4 + 4 tan^2A}}\,
= \int \frac {2 sec^2 A\,dA}{4 tan^2A\sqrt{4(1+tan^2A)}}\,
= \int \frac {2 sec^2 A\,dA}{4 tan^2A\sqrt{4 sec^2A}}\,
= \int \frac {2 sec^2 A\,dA}{4 tan^2A.2sec A}\,
= \int \frac {sec A\,dA}{4 tan^2A}\,
= \frac {1}{4}\int \frac {secA\,dA}{tan^2A}\,
= \frac {1}{4}\int \frac{cos A}{sin^2A}\,dA\,
Cari nilai dari: \int \frac{cos A}{sin^2A}\,dA\, dengan menggunakan substitusi
t = sin A, dt = cos A\,dA\,
\int \frac{cos A}{sin^2A}\,dA\,
= \int \frac{dt}{t^2}\,
= \int t^{-2}\,dt\,
= -t^{-1} + C= -\frac{1}{sin A} + C\,
Masukkan nilai tersebut:
= \frac {1}{4}\int \frac{cos A}{sin^2A}\,dA\,
= \frac {1}{4}.-\frac{1}{sin A} + C\,
= -\frac {1}{4 sin A} + C\,
Nilai sin A adalah \frac{x}{\sqrt{x^2+4}}
= -\frac {1}{4 sin A} + C\,
= -\frac {\sqrt{x^2+4}}{4x} + C\,

[sunting]Integrasi pecahan parsial

Contoh soal:
Cari nilai dari: \int\frac{dx}{x^2-4}\,
\frac{1}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2}\,
= \frac {A(x-2) + B(x+2)}{x^2-4}\,
= \frac{Ax-2A+Bx+2B}{x^2-4}\,
=\frac{(A+B)x-2(A-B)}{x^2-4}\,
Akan diperoleh dua persamaan yaitu A+B = 0\, dan A-B = -\frac{1}{2}
Dengan menyelesaikan kedua persamaan akan diperoleh hasil A = -\frac{1}{4}, B = \frac{1}{4}\,
\int\frac{dx}{x^2-4}\,
= \frac{1}{4} \int (\frac{1}{x-2} - \frac {1}{x+2})\,dx\,
= \frac{1}{4} (ln|x-2| - ln|x+2|) + C\,
= \frac{1}{4} ln|\frac{x-2}{x+2}| + C\,

[sunting]Rumus integrasi dasar

[sunting]Umum

[sunting]Bilangan natural

\int e^u du= e^u + C\,

[sunting]Logaritma

\int \log_b(x) \,dx = x \log_b(x) - \frac{x}{\ln(b)} + C = x \log_b \left(\frac{x}{e}\right) + C

[sunting]Trigonometri

\int\sin x\,dx = -\cos x + C\,
\int\cos x\,dx = \sin x + C\,
\int\tan x\,dx = \ln |\sec x| + C\,
\int\cot x\,dx = \ln |\sin x| + C\,
\int\sec x\,dx = \ln |\sec x + \tan x| + C\,
\int\csc x\,dx = \ln |\csc x - \cot x| + C\,
\int\sec^2 x\,dx = \tan x + C\,
\int\csc^2 x\,dx = - \cot x + C\,
\int\sec x\tan x\,dx = \sec x + C\,
\int\csc x\cot x\,dx = -\csc x + C\,



Aturan integrasi dari fungsi-fungsi umum

  1. \int af(x)\,dx = a\int f(x)\,dx \qquad\mbox{(}a \mbox{ konstan)}\,\!
  2. \int [f(x) + g(x)]\,dx = \int f(x)\,dx + \int g(x)\,dx
  3. \int f(x)g(x)\,dx = f(x)\int g(x)\,dx - \int \left[f'(x) \left(\int g(x)\,dx\right)\right]\,dx
  4. \int [f(x)]^n f'(x)\,dx = {[f(x)]^{n+1} \over n+1} + C \qquad\mbox{(untuk } n\neq -1\mbox{)}\,\!
  5. \int  {f'(x)\over f(x)}\,dx= \ln{\left|f(x)\right|} + C
  6. \int  {f'(x) f(x)}\,dx= {1 \over 2} [ f(x) ]^2 + C

[sunting]Integral dari fungsi-fungsi sederhana

[sunting]Fungsi rasional

\int \,{\rm d}x = x + C
\int x^n\,{\rm d}x =  \frac{x^{n+1}}{n+1} + C\qquad\mbox{ jika }n \ne -1
\int {dx \over x} = \ln{\left|x\right|} + C
\int {dx \over {a^2+x^2}} = {1 \over a}\arctan {x \over a} + C

[sunting]Fungsi irrasional

\int {dx \over \sqrt{a^2-x^2}} = \sin^{-1} {x \over a} + C
\int {-dx \over \sqrt{a^2-x^2}} = \cos^{-1} {x \over a} + C
\int {dx \over x \sqrt{x^2-a^2}} = {1 \over a} \sec^{-1} {|x| \over a} + C

[sunting]Logaritma

\int \ln {x}\,dx = x \ln {x} - x + C
\int \log_b {x}\,dx = x\log_b {x} - x\log_b {e} + C

[sunting]Fungsi eksponensial

\int e^x\,dx = e^x + C
\int a^x\,dx = \frac{a^x}{\ln{a}} + C

[sunting]Fungsi trigonometri

Artikel utama: Daftar integral dari fungsi trigonometri dan Daftar integral dari fungsi arc
\int \sin{x}\, dx = -\cos{x} + C
\int \cos{x}\, dx = \sin{x} + C
\int \tan{x} \, dx = \ln{\left| \sec {x} \right|} + C
\int \cot{x} \, dx = -\ln{\left| \csc{x} \right|} + C
\int \sec{x} \, dx = \ln{\left| \sec{x} + \tan{x}\right|} + C
\int \csc{x} \, dx = -\ln{\left| \csc{x} + \cot{x}\right|} + C
\int \sec^2 x \, dx = \tan x + C
\int \csc^2 x \, dx = -\cot x + C
\int \sec{x} \, \tan{x} \, dx = \sec{x} + C
\int \csc{x} \, \cot{x} \, dx = - \csc{x} + C
\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C
\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x) + C
\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C
\int \sin^n x \, dx = - \frac{\sin^{n-1} {x} \cos {x}}{n} + \frac{n-1}{n} \int \sin^{n-2}{x} \, dx
\int \cos^n x \, dx = \frac{\cos^{n-1} {x} \sin {x}}{n} + \frac{n-1}{n} \int \cos^{n-2}{x} \, dx
\int \arctan{x} \, dx = x \, \arctan{x} - \frac{1}{2} \ln{\left| 1 + x^2\right|} + C

[sunting]Fungsi hiperbolik

\int \sinh x \, dx = \cosh x + C
\int \cosh x \, dx = \sinh x + C
\int \tanh x \, dx = \ln| \cosh x | + C
\int \mbox{csch}\,x \, dx = \ln\left| \tanh {x \over2}\right| + C
\int \mbox{sech}\,x \, dx = \arctan(\sinh x) + C
\int \coth x \, dx = \ln| \sinh x | + C

[sunting]Fungsi inversi hiperbolik

\int \operatorname{arsinh} x \, dx  = x \operatorname{arsinh} x - \sqrt{x^2+1} + C
\int \operatorname{arcosh} x \, dx  = x \operatorname{arcosh} x - \sqrt{x^2-1} + C
\int \operatorname{artanh} x \, dx  = x \operatorname{artanh} x + \frac{1}{2}\log{(1-x^2)} + C
\int \operatorname{arcsch}\,x \, dx = x \operatorname{arcsch} x+ \log{\left[x\left(\sqrt{1+\frac{1}{x^2}} + 1\right)\right]} + C
\int \operatorname{arsech}\,x \, dx = x \operatorname{arsech} x- \arctan{\left(\frac{x}{x-1}\sqrt{\frac{1-x}{1+x}}\right)} + C
\int \operatorname{arcoth} \, dx  = x \operatorname{arcoth} x+ \frac{1}{2}\log{(x^2-1)} + C

No comments